2024年4月24-26
上海世博展览馆

电子展|深度解析8大传感器技术

1、电子展浅谈压力传感器

根据工艺和工作原理不同分为MEMS 压力传感器、陶瓷压力传感器、溅射薄膜压力传感器、微熔压力传感器、传统应变片压力传感器、蓝宝石压力传感器、压电压力传感器、光纤压力传感器和谐振压力传感器。

1)MEMS 技术

MEMS 压力传感器量程一般在 1kPa~100MPa 之间,具有小型化、可量产、易集成等优点,市场需求量最大、应用领域最广,是智能压力传感器的重要载体。

MEMS 压力传感器技术现在已较为成熟,基本可以分为压阻式和电容式两类,据推断该领域不会出现较大的技术突破,主要是渐进式的技术改进,像所有半导体产品一样,微型化是重要发展方向。

典型应用主要包括汽车电子,如汽车发动机系统、制动系统、燃油系统和后处理系统等,智能手机、无人机、可穿戴设备的高度计(气压计),石油、电力、轨道交通工业过程控制和状态监测压力传感器,航空航天气流压力检测等。

汽车电子是 MEMS 压力传感器最大的应用市场,据估计国内每年需求量达到数亿只,其中动力传动系统应用占压力传感器总量的 50%以上,安全系统、胎压监测系统等也用到较多的压力传感器。当前在节能减排和自动驾驶的需求驱动下,压力传感器在汽车的燃油蒸发排放系统、柴油颗粒过滤器等用量激增,这一市场需求在中国尤其强烈。

由于智能手机和平板电脑的迅速普及,消费电子已成为压力传感器的第二大应用市场,据估计国内每年需求量也达到数亿只,但大多依赖进口,随着近些年 MEMS 压力传感器成本和功耗的降低,其在可穿戴设备、无人机和智能家居等领域需求迅速扩大。

在医疗与工业市场,MEMS 压力传感器保持中等的增长速度,但有一例外是新型医用智能吸入器(medical smart inhalers,介于医疗电子市场与消费电子市场之间),为未来医疗消费物联网应用的发展铺平了道路。航空电子与高端应用虽然是小众市场,但得益于动态飞行器(the dynamic aircraft) 与 MEMS 技术的大力发展,目前也显示出较快的增长速度。

在不同的应用行业,MEMS 压力传感器的竞争态势不尽相同,市场份额最大的汽车电子与消费电子应用中,主要厂商都是大型集团。

汽车电子市场常采用垂直整合方式提高效益,而消费电子市场由于太小且分散的特点,没必要采取这种方式。

2)其他技术

从产品用量来看,陶瓷压力传感器是除 MEMS 压力传感器外用量最大的种类,耐腐蚀的优点使其广泛应用于汽车电子和工业电子,如汽车的发动机系统、暖通空调系统、柴油尿素包,工业制冷系统等,国内年需求量约为数千万只。

溅射薄膜压力传感器和微熔压力传感器环境适应性较强,主要用于汽车电子和工业电子。

传统应变片技术制作的压力传感器逐渐被 MEMS 技术和溅射薄膜技术所取代,但由于具备形状可变灵活应用的特点,目前在计量等一些有特殊要求的领域仍在使用。

蓝宝石压力传感器、压电压力传感器、光纤压力传感器和谐振压力传感器具备耐高温、耐恶劣环境等强环境适应性,一般多用于国防军工、航空航天、石油勘探等领域,国内主要厂商集中在相关高校与科研院所。

2、电子展浅谈惯性传感器

惯性传感器是一种运动传感器,主要用于测量物体在惯性空间中的运动参数。惯性传感器依据敏感量的不同分为加速度计和陀螺两大类。

惯性传感器市场最早由国防、航空航天等惯性导航应用推广而来,按照测量精度可分为高端应用市场和低端应用市场。

低端应用市场产品特点是价格较低、用量较大、性能要求较低,主要包括消费电子、汽车电子、工业自动化等;高端应用市场产品特点是精度要求较高、价格较贵、用量较小等,主要包括,国防和商业航天等军用级和宇航级电子产品,如导弹、火箭导航,飞机、导弹飞行或姿态控制,潜水艇、军舰等姿态控制等等。

目前高端惯性系统市场迎来许多新机遇,包括机器人、工业自动化、自动/无人驾驶汽车、船舶、飞机和无人机、结构监测、可重复使用航天运载器和微型卫星等。预计这些应用将使得高端惯性市场保持长期增长。

1)加速度计

加速度计按照自由度分为单轴、双轴、三轴加速度计,其中三轴加速度计市场占有率最高,加速度计和陀螺仪、磁力计多组合应用(加速度计与陀螺仪组合构成惯性测量单元,加速度计、陀螺仪和磁力计组合构成电子罗盘),以达到集成化、多功能的运动检测。

加速度计的主要类型有 MEMS 加速度计、石英挠性加速度计、压电加速度计和光纤加速度计。

MEMS加速度计是智能加速度计的主要实现形式,占据了最大的市场份额,其中消费电子是最大的应用市场,预估年用量在数十亿只左右,广泛用于智能手机、可穿戴设备的方向显示、运动检测,AR/VR设备的人体运动轨迹捕捉,无人机的导航与运动检测等。

MEMS加速度计在汽车的惯导系统、动力系统、防抱死刹车系统中也有着大量需求,年需求量亿只以上。尤其在自动驾驶解决方案中,需要将惯性测量单元(由加速度计和陀螺仪组成)和GPS等绝对定位系统融合使用,一方面可验证GPS定位结果的自洽性,另一方面可在 GPS 信号消失的区域继续提供持续若干秒的亚米级定位精度,为自动驾驶汽车争取宝贵的异常处理时间,是自动驾驶系统在定位领域的最后一道防线。

压电式加速度计具有测量范围广、耐高温、高频响等特点,主要用于工业过程测量控制、振动试验设备监测、航空航天发动机监测等。

光纤加速度计的主要特点是一根光纤可布设多点,成本大大降低,目前国内技术已能达到国际先进水平。

石英挠性加速度计能达到较高的精度和稳定性,主要应用在国防军工、航天航空的惯导制导等系统。

2)陀螺仪

陀螺按照工作原理和结构特点分为 MEMS 陀螺、光纤陀螺、激光陀螺、压电陀螺、半球谐振陀螺等。

同加速计类似,MEMS 陀螺是智能化陀螺仪的主要实现方式,它的精度虽然不如光纤陀螺、激光陀螺等高端产品,但其体积小、功耗低、易于数字化和智能化,特别是成本低,易于批量生产,非常适合手机、汽车、医疗器材等需要大规模生产的设备。

光纤陀螺、激光陀螺、压电陀螺、半球谐振陀螺等高精度陀螺用量小、成本高,主要用于国防军工、航空航天等高端惯性领域,几种技术间竞争较为激烈。陀螺仪能提供准确的方位、水平、位置、加速度等信号,以便驾驶员或自动导航仪控制飞机、舰船等航行体按一定的航线飞行,而在导弹、卫星运载器或空间探测火箭等航行体的制导中,则可直接利用这些信号完成航行体姿态控制和轨道控制。

在传感器中陀螺仪属于技术门槛较高的产品,工艺结构复杂,投资成本高,产品研发工作主要集中在高校和科研院所,国内具有自主设计能力并实现量产的企业较少。

3、电子展浅谈磁传感器

磁传感器是通过感测磁场强度、磁场分布、磁场扰动等来精确测量电流、位置、方向、角度等物理参数,广泛用于消费电子、现代工农业、汽车和高端信息化装备中。

磁传感器主要实现技术包括霍尔技术(Hall Technology)、各项异性磁阻技术(AMR Technology)、巨磁阻技术(GMR Technology)、隧道结磁阻技术(TMR Technology)等。

目前市场上主要的磁传感器芯片是基于霍尔效应(全球市场占有率 70%)开发的。XMR 技术最大的优势是高灵敏度及精准度。

汽车市场是磁传感器最大的应用市场,传统的汽油汽车上磁传感器的用量约为 20~30个,由于混合动力汽车更高的电流控制需求,磁传感的用量将达到 35个以上。

磁传感器可用于位置和速度传感、开关控制、电流传感等,未来随着自动驾驶汽车可靠性要求的提高,动力总成系统和辅助无刷电机系统对磁传感器的可靠性提出了更高的需求。磁传感器在工业控制、交通、智能家居、消费电子等领域的应用较汽车领域更为分散,且单价更高。

随着智能手机市场趋于饱和,用于电子罗盘的磁传感器近年的销量也趋于稳定,主要应用于手机中的电子地图与 GPS。但在可穿戴设备、无人机、机器人等新兴应用领域有着较高的市场潜力。

4、电子展浅谈麦克风

随着 Alexa、Cortana、Siri 等智能语音控制功能的出现,麦克风在智能终端的需求迅速扩大,核心技术发展方向包括语音识别、噪声消除、身份识别等。

麦克风实现技术主要分为两类,MEMS 麦克风和传统的驻极体麦克风(ECM)。MEMS 麦克风凭借微型化、低功耗等特性更好满足智能手机、智能音箱、智能耳机、机器人等应用的语音交互需求。

相比之下,ECM 麦克风尽管具有高信噪比、一致性好等特点,但成本优势渐弱,在语音交互普及的浪潮中被替代的趋势越来越明显。在全部智能传感器种类中,我国 MEMS 麦克风产业发展水平相对较高。

5、电子展浅谈光学传感器

光学智能传感器按照感测波段的不同分为可见光传感器、红外光传感器和紫外光传感器等,其中可见光图像传感器占据了最大的市场份额,也是智能传感器中价值较高的产品。

1)可见光传感器

可见光传感器主要包括化合物可见光传感器、硅 PN 结型可见光传感器和硅阵列型可见光传感器(即图像传感器)。其中化合物可见光传感器和硅 PN 结型可见光传感器主要用于手机、电脑、仪表盘等显示设备的光线感知和自动调节,国内制造技术已较为成熟,年需求量在数亿只左右。

图像传感器主要实现方式有 CMOS 和 CCD 两种技术,CCD 图像传感器具备成像质量高、灵敏度高、噪声低、动态范围大的优势,但由于成本较高、功耗大且读取速度较慢,主要用于航空航天、天文观测、扫描仪等成像质量需求较高的领域,主要生产单位为相关科研院所。

CMOS 图像传感器成本仅为 CCD 图像传感器的 1/3 左右、功耗低且读取方式简单,广泛应用于手机摄像头、数码相机、AR/VR 设备、无人机、先进驾驶辅助系统、机器人视觉等领域。

CMOS 图像传感器产业的快速增长首先来自于双摄像头技术在手机行业的发展。消费市场迅速接受了双摄像头的设计,手机背面的双摄像头改善了图像的解析度及低光下拍照的性能,双摄像头也被设计在手机正面,支持人脸识别、虹膜识别及 3D 识别等。移动设备制造商之间的竞争和差异化与 CMOS 图像传感器的性能水平息息相关。

同时,ADAS 防碰撞摄像头与 360 度辅助停车摄像头等市场的发展,极大推动了 CIS 产业在汽车行业的发展。在安防领域 CMOS 图像传感器市场也较为活跃、发展快速,中国市场紧密参与且扮演着越来越重要的作用。不过 CMOS 图像传感器产业现状还有一个关键特征是中国的积极成长,在未来会发挥更加重要的作用。中国正在形成一个可持续性的生态圈,包括 CMOS 图像传感器代工厂、CMOS 图像传感器供应商及系统制造商等。

2)红外传感器

红外传感器具有精度高、检测范围宽、不易受外界环境干扰等优点,近年来随着技术的提高和成本的大幅降低,在工业检测、智能家居、节能控制、气体检测、移动智能终端、火灾监控、家庭安防等商业应用的需求迅速提升,新兴的自动驾驶和商用无人机技术扩大了非制冷红外成像的市场需求。

红外传感器包括单元红外传感器、阵列红外传感器和焦平面红外传感器三大类别。

单元红外传感器主要为热传感器,成本较低使用简单,主要应用于自动感应、人体存在检测、入侵报警、非色散气体检测、工业测温、人体测温等领域,但用于光谱仪、气体检测等高灵敏度、高性能器件依靠进口。

阵列红外传感器主要为热传感器,成本适中、可同时输出图像及温度数据,其中微测辐射热计型与国外水平相近,但国内供应商与大型集成商如智能楼宇控制、消防火警等应用的对接能力较弱,市场占有率较低。热电堆型阵列红外传感器国内暂无厂商具备生产能力。

焦平面红外传感器在过去的十年里,市场主要由国防需求驱动,包括非制冷型和制冷型焦平面传感器(或称探测器),非制冷型红外焦平面传感器相对于制冷型产品,具有体积小、重量轻、寿命长等特点,由于成本大幅降低,在工业测温热像仪、安防监控、汽车辅助驾驶、建筑检测、电力机器人等装备中大量应用,而制冷型焦平面红外传感器由于成本较高主要用于红外导引头、卫星等军事和航空航天领域。

6、电子展浅谈温度传感器

温度传感器的发展大致经历了以下三个阶段:传统的分立式温度传感器(含敏感元件)、模拟集成温度传感器、智能温度传感器。目前国际上新型温度传感器正从模拟式向数字式、由集成化向智能化、网络化的方向发展。

模拟集成温度传感器是将温度传感器集成在一个芯片上、可完成温度测量及模拟信号输出功能的专用 IC。模拟集成温度传感器的主要特点是功能单一(仅测量温度)、测温误差小、价格低、响应速度快、传输距离远、体积小、微功耗等,适合远距离测温、控温,不需要进行非线性校准,外围电路简单,是目前应用为普遍的一种温度传感器。

智能温度传感器(亦称数字温度传感器)是在 20 世纪 90 年代中期问世的,它是微电子技术、计算机技术和自动测试技术(ATE)的结晶。目前,国际上已开发出多种智能温度传感器系列产品。

智能温度传感器内部都包含温度传感器、A/D 转换器、信号处理器、存储器(或寄存器)和接口电路。有的产品还带多路选择器、中央控制器(cpu)、随机存取存储器(RAM)和只读存储器(ROM)。

智能温度传感器的特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU);并且它是在硬件的基础上通过软件来实现测试功能的,其智能化程度也取决于软件的开发水平。

早期推出的智能温度传感器,采用的是 8 位A/D 转换器,其测温精度较低,分辨力只能达到 1°C。目前,国外已相继推出多种高精度、高分辨力的智能温度传感器,所用的是 9~12位 A/D 转换器,分辨力一般可达 0.5~0.0625°C。

进入 21 世纪后,智能温度传感器正朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向迅速发展。

温度传感器的应用市场主要有化工、石油天然气、消费电子、能源和电力、汽车电子、医疗保健、食品、金属矿业等。智能温度传感器正朝着高精度、多功能、总线 标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单 片测温系统等高科技的方向迅速发展。

在医疗电子领域,随着先进的病人监护系统和便携式健康监测系统等技术的出现,对温度传感器的需求也在不断增加,微型化的高精度温度传感器是推动医疗电子设备迅猛发展的最大动力。

在消费电子领域,温度传感器主要应用在如手机电池、笔记本主板、显示器、计算机微处理器的温度探测等通信类产品上。

在汽车电子领域,温度传感器主要用于发动机、冷却系统、传动系统、空调系统等,是提高汽车智能性、节能性、舒适性的关键元件之一,其质量的稳定、性能的可靠、精度的高低对汽车的安全性、舒适性、智能性和节能性都将产生重要影响。

7、电子展浅谈指纹传感器

随着数据和信息流的大幅度增加,信息传输和处理中的安全隐患也越来越受到关注,信息安全的保护措施也在不断提升。

指纹识别等生物识别技术愈发向着便捷、高效、低成本、微小化等趋势演进,下游的应用场景也从传统的门禁、考勤等领域向移动终端、智能家居、智能汽车等领域快速渗透,认证、解锁、支付三大功能持续发展。

指纹识别传感器是指纹识别系统的核心模块。指纹识别传感器采集指纹信息,并将采集到的信息同指纹数据库中指纹数据进行比对,以达到指纹识别的目的。指纹传感器主要实现方式有三种:光学感应技术、电容感应技术和超声波感应技术。

光学指纹传感器中因为存在棱镜,体积较大,在小型设备如手机等的应用较少,在考勤机、门禁等设备上使用频繁,成本低是其最大优势。

电容指纹传感器发出的电子信号能够穿透手指皮肤到达真皮层,获取的数据相对更加可靠,因成本低廉、体积小、精度较高,是目前主流的指纹识别解决方案。

超声波指纹传感器能够感知多种材料如金属蓝宝石,无需手指与指纹模块直接接触就能实现 3D 扫描指纹,精度不受污渍、 油脂、汗水的影响。但由于制作成本昂贵,目前技术和制作工艺尚未达到理想的穿透厚度,因此暂时没有成为智能终端的标配。指纹识别是过去几年智能移动终端市场中较为成功的创新之一,

8、电子展浅谈气体和颗粒物传感器

在过去很长的一段时间,气体与颗粒物传感器主要应用于工业生产领域,如石油、化工、钢铁、冶金、矿山等。近年来随着空气质量的下降和环境的污染,空气质量监测与控制成为人们关注的热点。气体和颗粒物传感器市场属于上升的趋势。

智能气体传感器的技术发展方向集中在低功耗、低成本、无线通讯和支持多气体检测等。目前应用的气体传感器中,以半导体气体传感器、电化学气体传感器、催化燃烧气体传感器、光学气体传感器四大门类为主。

半导体气体传感器适用面广,简单易用,成本低,但线性范围小,易受背景气体和温度干扰,在家用、工业、商业可燃气体泄露报警,防火安全探测,便携式气体检测器等领域广泛应用。

电化学气体传感器具有体积小、功耗低、线性范围宽、重复性好、易受干扰的特点,非常适合低浓度毒性气体检测,以及氧气和酒精等无毒气体的检测,目前主要应用在石油化工、冶金、矿山等工业领域以及道路交通安全检测领域。

催化燃烧式气体传感器具有对可燃气体响应光谱性、温湿度不敏感、结构简单、精度较低的特点,多用于工业现场的天然气、液化气、煤气、烷类等可燃气体浓度检测,以及汽油、苯、醇、酮等有机溶剂蒸汽检测。

光学气体传感器主要有红外气体传感器和紫外气体传感器,具有高灵敏度、高分辨率、响应时间快、低功耗、多种输出方式、技术难度较大、价格高等特点,是智能气体传感器的重要载体,适用于检测甲烷、二氧化碳等气体,主要应用在暖通制冷与室内空气质量监控、新风系统、工业过程及安全防护监控、农业及畜牧业生产过程监控等领域。

近年来,随着互联网与物联网的高速发展,气体传感器在智能家居、可穿戴设备、智能移动终端、汽车电子等领域的应用突飞猛进,大幅扩展了应用空间,需求量也发生数量级的改变。

近三年来(2019-2021),我国对环境保护、安全生产、医疗健康等力度不断加大,环境检测、工业排放、可燃有毒气体、便携式医疗设备等应用场景对气体传感器提出了大量需求。我国气体传感器呈现出爆发式增长。气体传感器的研究涉及面广、难度大,属于多学科交叉的研究内容。要切实提高传感器各方面的性能指标需要多学科、多领域研究工作者的协同合作。

电子展小编觉得,国内企业的气体传感器技术整体研发水平仍落后于发达国家,国内对气体传感器的研究主要体现在低端的半导体传感器和催化燃烧传感器方面,在高端的红外及电化学传感器的研究较少,缺乏成熟的应用技术,高端红外及电化学气体传感器和检测仪器仪表依赖进口。即使在低端的半导体和催化燃烧气体传感器方面,产品精度、稳定性和工艺水平相对于国外先进技术仍有较大差距。