据电子制造展小编的了解,在过去的几年里,行波管(TWT)放大器一直将更高功率电子设备作为许多这类系统中的输出功率放大器级。TWT拥有一些不错的特性,包括千瓦级功率、倍频程带宽或者甚至多倍频程带宽操作、高效回退操作以及良好的温度稳定性。TWT也有一些缺陷,其中包括较差的长期可靠性、较低效率,并且需要非常高的电压(大约1 kV或以上)才能工作。
关于半导体IC的长期稳定性,这些年电子设备一直向前发展,莫过于GaAs。在可能的情况下,许多系统工程师一直努力组合多个GaAs IC,生成大输出功率。整个公司都完全建立在技术组合和有效实施的基础之上。进而孕育了许多不同类型的组合技术,如空间组合、企业组合等。这些组合技术全都面临着相同的命运——组合造成了损耗,幸运的是,并不一定要使用这些组合技术。这激励我们使用高功率电子设备开始设计,提高功率放大器RF功率的较为简单的方式就是增加电压,这让氮化镓晶体管技术非常具有吸引力。
如果我们对比不同半导体工艺技术,就会发现功率通常会如何随着高工作电压IC技术而提高。硅锗(SiGe)技术采用相对较低的工作电压(2 V至3 V),但其集成优势非常有吸引力。GaAs拥有微波频率和5 V至7 V的工作电压,多年来一直广泛应用于功率放大器。硅基LDMOS技术的工作电压为28 V,已经在电信领域使用了许多年,但其主要在4 GHz以下频率发挥作用,因此在宽带应用中的使用并不广泛。
新兴GaN技术的工作电压为28 V至50 V,拥有低损耗、高热传导基板(如碳化硅,SiC),开启了一系列全新的可能应用。如今,硅基GaN技术局限于6 GHz以下工作频率。硅基板相关的RF损耗及其相对SiC的较低热传导性能则抵消了增益、效率和随频率增加的功率优势。
GaN技术的出现让业界放弃TWT放大器,转而使用GaN放大器作为许多系统的输出级。这些系统中的驱动放大器仍然主要使用GaAs,这是因为这种技术已经大量部署并且始终在改进。下一步,我们将寻求如何使用电路设计,从这些宽带功率放大器中提取较大功率、带宽和效率。当然,相比基于GaAs的设计,基于GaN的设计能够提供更高的输出功率,并且其设计考虑因素在很大程度上是相同的。
来源:电子发烧友网
以上便是电子制造展小编为大家整理的关于行波管(TWT)放大器的半导体技术的相关内容,若有兴趣参与,欢迎到电子制造展参观了解,还可以和专业大咖面对面交流哦!