2020年12月17日
氮化镓:第三代半导体材料前景广阔
氮化镓和碳化硅是成熟的第三代半导体材料又称宽禁带半导体材料(禁带宽度大于2.2ev),其余包括氧化锌、金刚石、氮化铝的研究还处于起步阶段。今天由表面贴装展给大家详细讲解。
氮化镓是未来具有增长潜质的化合物半导体,能迅速应用于变频器、稳压器、变压器、无线充电等领域。与GaAs和InP等高频工艺相比,氮化镓器件输出的功率更大;与LDCMOS和SiC等功率工艺相比,氮化镓的频率特性更好。
氮化镓拥有大禁带宽度、直接带隙,很高的电子迁移率等的特点,是一种理想的短波长发光器件材料,并且耐高温,耐高压,在超大频率和功率密度方面都远优于Si材料,相对于一代和二代半导体具有更好的物理属性,能更好的满足未来发展需求。
其主要应用于军用或高性能射频器件,包括卫星、航天、手机等通信领域,以及在光电子,微电子,高温大功率器件和高频微波器件等非通信领域中均有广泛的应用。
随着GaN快充市场渗透率逐步提升,各厂家积极布局。继ANKER、AUKEY、RAVPower之后,OPPO、小米和华为陆续推出氮化镓快充,同时2020年CES展共30家厂商推出60款氮化镓快充,氮化镓快充凭借自身的大功率、低体积优势,未来或成为手机标配,同时适配笔记本电脑,为出行“减负”。
目前氮化镓通过其高频开关速度特性,提升电源转化效率,降低充电头发热,帮助充电器小型化。因此GaN充电器同等功率下体积更小,同等体积下功率更大。
在射频器件领域,目前LDMOS(横向扩散金属氧化物半导体)、GaAs(砷化镓)、GaN(氮化镓)三者占比相差不大,但据Yoledevelopment预测,至2025年,砷化镓市场份额基本维持不变的情况下,氮化镓有望替代大部分LDMOS份额,占据射频器件市场约50%的份额。
目前氮化镓器件有三分之二应用于军工电子,如军事通讯、电子干扰、雷达等领域;在民用领域,氮化镓主要被应用于通讯基站、功率器件等领域。
基站建设将是氮化镓市场成长的主要驱动力之一。Yoledevelopment数据显示,2018年,基站端氮化镓射频器件市场规模不足2亿美元,预计到2023年,基站端氮化镓市场规模将超5亿美元。氮化镓射频器件市场整体将保持23%的复合增速,2023年市场规模有望达13亿美元。
全球每年新建约150万座基站,未来5G网络还将补充覆盖区域更小、分布更加密集的微基站,对GaN器件的需求量将大幅增加。此外表面贴装展还了解到,国防市场在过去几十年里一直是氮化镓开发的主要驱动力,目前已用于新一代空中和地面雷达。
随着5G高频通信的商业化,氮化镓将在电信宏基站、真空管在雷达和航空电子应用中占有更多份额。氮化镓基站PA的功放效率较其他材料更高,因而能节省大量电能,且其可以几乎覆盖无线通讯的所有频段,功率密度大,能够减少基站体积和质量。
来源:深度行业研究