机器视觉的主要应用领域(一)

2020年12月18日

现在,发展迅猛的自动化技术在我国掀起了热潮,国际电子展也对机器视觉加深了认识,每个人对它的看法发生了巨变。机器视觉系统让大批量、持续生产的自动化程度提高了,大大提高了为工业生产效率和产品精度,同时获取信息与自动处理的能力变得极其快,为工业生产的信息集成提供了有效途径。机器视觉技术不断成熟和进步,应用范围变得越来越宽泛。

 

1、工业检测

 

近几十年来,在工业检测中利用视觉系统的非接触、速度快、精度合适、现场抗干扰能力强等突出的优点,使机器视觉技术得到了广泛的应用,取得了巨大的经济与社会效益。

 

机器视觉系统的特点是提高生产的柔性和自动化程度。运用在一些危险工作环境或人工视觉难以满足要求的场合;此外,在大批量工业生产过程中,机器视觉检测可以大大提高生产效率和生产的自动化程度。

 

自动视觉识别检测目前已经用于产品外形和表面缺陷检验,如木材加工检测、金属表面视觉检测、二极管基片检查、印刷电路板缺陷检查、焊缝缺陷自动识别等。这些检测识别系统属于二维机器视觉,技术已经较为成熟,其基本流程是用一个摄像机获取图像,对所获取的图像进行处理及模式识别,检测出所需的内容。

 

2、汽车制造行业

 

汽车制造质量原先主要依靠三坐标测量完成,效率低、时间长、数据量严重不足, 且只能离线测量。机器视觉引入非接触测量技术,逐步发展成固定式在线测量站 与机器人柔性在线测量站等在线测量系统,可严格监控车身尺寸波动,提供数据支持。

 

除传统三坐标测量、激光在线测量外,蓝光扫描测量、表面缺陷测量等视觉测量 方法可进行更加精细地测量,对车身基本特征尺寸、车体装配效果、缺陷等提供 高精度监控。多种监控测量手段互相结合,确保生产零件零缺陷、整车制造高质量。

 

机器视觉检测系统可以对产品进行制造工艺检测、自动化跟踪、追溯与控制等, 包括通过光学字符识别(OCR)技术获取车身零件编码以保证零件在整个制造过程中的可追溯性,通过识别零件的存在或缺失以保证部件装配的完整性,以及通过视觉技术识别产品表面缺陷或加工工具是否存在缺陷以保证生产质量。

 

3、消费电子行业

 

消费电子行业元器件尺寸小、质量标准高,适合用机器视觉系统检测,也促进机器视觉技术进步。同时,消费电子产品生命周期短、需求量大,拉动机器视觉市场需求。

 

机器视觉在消费电子领域,以PCB/FPC AOI检测、零部件及整机外观检测、装配引导等应用为主,并呈现出越来越多的新的应用场景。

 

PCB缺陷检测主要是焊点缺陷检测和元器件检测两大部分。传统的人工目视检测法易漏检、速度慢、时间长、成本高,已不能满足生产需要,机器视觉PCB检测系统具有重要的现实意义。

 

在电路板从印刷装置中移下,或在清洗剂中清洗后,以及返修完成返回生产线中,机器视觉提供的在线视觉技术可以在实施印刷操作后直接发现存在的缺陷情况,保证了操作者在加上PCB以前能够及时处理有关问题。另外,发现缺陷时可以有效防止有缺陷的电路板送达生产线后端,从而避免出现返修或废弃现象。操作者能够及时得到反馈,明确处于操作中的印刷工艺操作是否良好,达到预防缺陷产生的目的,对生产效率和良率的提升至关重要。

 

4、图像识别

 

图像识别,简单讲就是使用机器视觉处理、分析和理解图像,识别各种各样的的对象和目标,功能非常强大,图片识别应用热度在视觉与图像领域中排名第三。

 

典型的图像识别应该就是识别二维码了。二维码和条形码是我们生活中极为常见的条码。在商品的生产中,厂家把很多的数据储存在小小的二维码中,通过这种方式对产品进行管理和追溯,随着机器视觉图像识别应用变得越来越广泛,各种材质表面的条码变得非常容易被识别读取、检测,从而提高现代化的水平、生产效率大大的提高、生产成本降低。

 

图像识别大多商用场景还属于蓝海,潜力有待开发,同时,图片数据大多被大型互联网企业所掌握,创业公司数据资源稀少。人脸识别也属于图像识别的一个应用场景,做人脸识别的大多数企业同时也在提供图像识别服务,但是销售效果不佳,主要赢利点还在于人脸识别。